The project developer Consorci Urbanistic (ConsCd) was responsible to develop 340 ha of ground for a new community of 50,000 inhabitants. A science and technology center on site now is supplied with a highly efficient heat, cold and electricity network powered by gas tri-generation units. A wood gasification plant and a solar thermal cooling system have been designed and will be constructed in a new power plant building (after the CONCERTO period). The heating and cooling network for the first development area is finished and operational.
The “Alba Synchrotron Office Building” with 4,054 m² gross floor area (Picture 1) is part of the science and technology park and has implemented several efficiency measures like curtain wall and roof with very low transfer coefficients and a building management system (BMS) to ensure comfort and proper operation of the services. The BMS additionally allows detailed monitoring of the building.
The „ST-4“ tri-generation plant started operation in July 2010 and was then opened officially. ST-4 includes energy efficiency measures in poly-generation systems, amongst them a district heating and cooling network and an underground chilled water storage tank of 3,750 m³, which acts as a buffer to meet higher cooling demands during peak loads. Also single and double effect thermal absorption chillers are operated from the engine and exhaust gas heat supply. Thermal energy supply to the Synchrotron started in September, after the start-up of the plant’s absorption chillers. The engineering design of “ST-2” with wood gasification and solar thermal energy use continued. The planning foresees to end the implementation and start supplying energy in mid June 2013.
Two residential buildings have been built within CONCERTO: “La Clota” with 53 apartments and “Cordova Street” with 24 apartments. “La Clota” (Picture 2) has a total floor area of 2,786 m² and the dwelling size ranges between 40 and 43 m². The dwellings have been designed with an intermediate space that contains devices to create and regulate natural ventilation in in summer. At „Cordova Street“ (2,172 m²) all the residences have Trombe wall modules (Diagram 1) in the southern façade for preheating in winter and ventilation in summer. Additionally to windows on two opposite facades each apartment has access to a chimney with a manual opening for natural ventilation purposes. By this the building operates without any active cooling devices even during hot summers.

Diagram 1 – Use of Trombe Wall in Winter at Cordova Street
Poly-generation Plant „ST-4“
A energy supply plant with three gas driven cogeneration engines coupled to thermal (absorption) chillers is now operational in Cerdanyola (Picture 1 + 2). The „Synchrotron Office Building“ is the first major customer.
Since July 2010, the first poly-generation plant supplies electricity to the grid through a new 225/25 kV electrical substation, and at the same time, has a direct connection to the Synchrotron Light Laboratory to guarantee power supply in the event of a power blackout. The connection of the Synchrotron and ST-4 plant to the electrical grid takes place in the same point as the new substation. Besides, for a higher quality of electricity supply (wave stability), the Synchrotron requires a 220 kV connection, which means that ST-4 and CELLS share a transformer in the substation. This solution is exceptional within the Spanish electrical system and has implied complicated negotiations with the distribution grid owner (ENDESA), the transport grid owner (REE) and the Ministry of Industry.
On the other hand, thermal energy supply to the Synchrotron started in September, after the start-up of the plant’s absorption chillers. Due to the security requirements of the Synchrotron Light Laboratory, dedicated pipelines supply heat and cold only to this facility, regardless of the DH&C network.
The thermal cooling systems at the current stage are one 3 MWcooling single-effect absorption chiller driven by hot water from co-generation (future enlargement: 1 unit of 2 MWcooling) and one 5 MWcooling double-effect absorption chiller powered by cogeneration exhaust gases (future enlargement 1 unit of 3.35 MWcooling).
The cogeneration is run by 3 high efficiency engines of 3.35 MWel each fuelled by natural gas at the current state. There is room at ST-4 for 2 more engines at a future stage. Table 1 shows the technical data of the engines, diagram 1 displays monitoring data, showing that the three engines run at peak load during weekdays.

Table 1 – Technical Data of the three CHP units

Diagram 1 – Monitoring Data of the three CHP engines
Biomass Gasification Plant
In 2008, a feasibility study of the biomass plant was updated by the ESCO. According to the results of this updated feasibility study, it is considered suitable both from a technical and economic perspective to implement a biomass gasification plant that will produce syngas (up to 2,500 m³/h), which will be used to fuel a cogeneration engine, with an electrical output of 1.6 MW. This biomass gasification co-generation plant will be fuelled either by wood waste from discarded furniture (e.g. plywood) or by sub-products from agricultural origin, whose supply seems to be efficient and certain in the long term.
CREVER-URV has continued working in a model of the wood gasification process. This model is able to predict producer gas composition for different biomass types and also for different gasification agents (air, steam.,.). It is being validated using published experimental data.